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A Hierarchical Netvwk of Provably
OptmalLearning Control Systemn:

ixteialons of te Associative Control
Process (ACP) Network

Leemon C. Baird III* A. Harry Klopf
Wright Laboratory Wright Laboratory

An associative control process (ACP) network is a learning control system that
can reproduce a variety of animal learning results from classical and
instrumental conditioning experiments (Klopf, Morgan, I Weaver, 1993; see
also the article, "A Hierarchical Network of Control Systems that Learn'). The
ACP networks proposed and tested by Klopf, Morgan, and Weaver are not
guaranteed, however, to learn optimal policies for maximizing reinforcement.
Optimal behavior is guaranteed for a reinforcement learning system such as
0-learning (Watkins, 1989), but simple 0-learning is incapable of reproducing
the animal learning results that ACP networks reproduce. We propose two new
models that reproduce the animal learning results and are provably optimal.
The first model, the modified ACP network, embodies the smallest number of
changes necessary to the ACP network to guarantee that optimal policies will be
learned while still reproducing the animal learning results. The second model,
the single-layer ACP network, embodies the smallest number of changes
necessary to 0-learning to guarantee that it reproduces the animal learning
results while still learning optimal policies. We also propose a hierarchical
network architecture within which several reinforcement learning systems (e.g.,
0-learning systems, single-layer ACP networks, or any other learning
controller) can be combined in a hierarchy. We implement the hierarchical
network architecture by combining four of the single-layer ACP networks to
form a controller for a standard inverted pendulum dynamic control problem.
The hierarchical controller is shown to learn more reliably and more than an
order of magnitude faster than either the single-layer ACP network or the Barto,
Sutton, and Anderson (1983) learning controller for the benchmark problem.

Key Words: optimal control, learning, 0-learning, hierarchical control

1 Introduction

An associative control process (ACP) network is a learning control system that can
reproduce a variety of animal learning results from classical and instrumental con-
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ditioning experiments (Klopf, Morgan, & Weaver, 1993; see also the article, "A
Hierarchical Network of Control Systems that Learn"). The ACP networks pro-
posed and tested by Klopf, Morgan, and Weaver are not guaranteed, however, to
learn optimal policies for maximizing reinforcement. These ACP networks require
that training be conducted in trials and that reinforcement occur only at the end of a
trial. These ACP networks cannot handle multiple reinforcements in the same trial
or reinforcement before the end of a trial. Also, given a choice of several different
routes to reinforcement, these ACP networks are not guaranteed to find the shortest
route. Optimal behavior in these situations is guaranteed for a reinforcement learning
system such as Q-learning (Watkins, 1989), but simple Q-learning cannot reproduce
the animal learning results that ACP networks reproduce.

We propose two new models that reproduce the animal learning results and are also
provably optimal. The first model, the modified ACP network, embodies the smallest
number of changes necessary to the ACP network to guarantee that optimal policies
will be learned while still reproducing the animal learning results. The second model,
the single-layer ACP network, embodies the smallest number of changes necessary to
Q-learning to guarantee that it reproduces the animal learning results while still
learning optimal policies. The two models have identical behavior but different
internal structure, and both are presented in order to illustrate how they differ from
the original ACP network and from Q-learning.

The modified ACP network and the single-layer ACP network are guaranteed
to learn optimal behavior eventually but, like Q-learning, may learn very slowly.
We propose a hierarchical network architecture as one approach for increasing the speed
of learning. This is an architecture within which several reinforcement learning
systems (e.g., Q-learning systems, single-layer ACP networks, or any other learning
controller) can be combined in a hierarchy. We implement the hierarchical network
architecture by combining four of the single-layer ACP networks to form a controller
for a benchmark cart-pole problem. Using this standard problem, we compare the
hierarchical learning controller's performance with that of other learning systems,
including that of the Barto, Sutton, and Anderson (1983) learning controller. We
will demonstrate that the hierarchical network learns more reliably and the training
time is decreased by more than one order of magnitude for this problem.

2 The ACP Network Architecture

The original ACP network was proposed by Klopf, Morgan, and Weaver (1993)
and incorporates the drive-reinforcement learning mechanism described in Klopf
(1988). This section describes the original ACP network, which is then modified
and simplified in a subsequent section. An ACP network (Fig. 1) has two types

322 Adaptive Behavior Volume 1, Number 3
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xi Mt N•j() Rt

Sensor Motor Reinforcement Reinforcement
inputs centers centers inputs

Figure 1
Associative control process (ACP) network architecture. Assuming N = 0 at all times, there is only one
reinforcement center that is active, the positive reinforcement ccnter (PC). The negative reinforcement
center (NC) is never active, and the weights associated with NC never change. The state is sensed
through the sensors, and the actions are performed based on the outputs of the motor centers. There is
one motor center for each possible action. For each pair consisting of one sensor and one motor center,
there are four weights: an excitatory and an inhibitory weight for the connections from the sensor to the
motor center and an excitatory and an inhibitory weight for the connections from the sensor to PC. The
latter connections are facilitated by signals from the motor center.

of inputs: a pair of reinforcement signals (rectangles on the right) and m sensors
(rectangles on the left). There are two layers: a layer consisting of n motor centers
(circles on the left) and a layer consisting of a pair of reinforcement centers (circles on
the right). The positive reinforcement center (PC) learns to predict the occurrence of
positive reinforcement (P). If the signal N is zero at all times, then the reinforcement
center NC has no effect on either behavior or learning, The modified ACP network
does not have a negative reinforcement center yet is able to reproduce the simulation
results of the original ACP network. There are two weights from a given sensor i
to a given motor centerj: a positive weight Wy+ and a negative weight Wy.. For
each motor centerj, there are two weights from sensor i to the positive reinforcement
center that are facilitated by that motor center: WOjj+ and Wo-.. Signals pass through
these facilitated connections only when the associated motor center is active. In the
notation used here, y, (with a subscript) represents the output of one of the motor
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An Optimal Learning Control System Leemon C. Baird Ill & A. Harry Klopf

centers. The variable y without a subscript represents the output of the reinforcement
center PC. Equations 1 through 4 specify the calculation of the outputs of the various
centers:

yj(t) =f [Wi,+(t) + wI (t)1 xi(t) (1)

Y(t) =f {R(t) + - [Woijm,+(t) + Woijm.-(t)] xi(t)} (2)

0 ifx<_O
f(x) 1 if x>_1 (3)

x otherwise

j.• = jsuch thatrV k j yj(t) > yk(t) (4)

The threshold, 0, is a small positive constant. When one motor center has an

output larger than all the others, the indexjna,, represents which motor center output
is largest. This, in turn, determines which weights are used to calculate the output

of the reinforcement center. If two or more motor center outputs are equal to the

maximum output, then jr, is undefined for that time step, all motor center and
reinforcement center outputs go to zero, the network as a whole performs no action,

and no weights change on that time step. Otherwise, the action associated with

motor center jm• is performed at time t, and only those weights associated with
action jmn,, change. The changes in those weights are:

" WY-± (t) = [Ca + CbIY(t)1] W w.•:(t)I [Ax;(t)] + [Y(t) - Yj(t)] (5)

""Woy-± (t) Ay(t) ck Woy_±+(t - k)I [Axi(t - k)]+ (6)
k=1

AY(t) = y() - Y(t - 1) (7)

[Axi(t)]+ 1 ifxi(t) = 1 andx,(t- 1) = 0

0 otherwise

The factors c,, cb, 7r, and Cl,. . , C7 are all nonnegative constants. The learning
process is divided into periods of time called trials, and weights change only at the

end of each trial. The weight change at the end of the trial is simply the sum of all
A W calculated during the trial.

This ACP network, as described by Klopf, Morgan, and Weaver (1993), was

shown to be capable of reproducing a wide range of classical conditioning results, as
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described in Klopf (1988), and instrumental conditioning results in a variety of con-
figurations of multiple-T mazes. The classical conditioning phenomena reproduced
by the ACP network include delay and trace conditioning, conditioned and un-

conditioned stimulus duration and amplitude effects, partial reinforcement effects,
interstimulus interval effects, second-order conditioning, conditioned inhibition,
extinction, reacquisition effects, backward conditioning, blocking, overshadowing,
compound conditioning, and discriminative stimulus effects. The instrumental con-

ditioning results reproduced by the ACP network include chaining of responses,
habituation, and reactions to positive and negative reinforcement within a variety of

configurations of multiple-T mazes containing visual, tactile, and reinforcing stimuli.
Not all of these results are reproducible with a standard Q-learning system. For ex-

ample, Figure 2 shows the behavior of a Q-learning system in a simple environment.
The environment consists of a single state, a single action, a constant reinforcement,

and trials consisting of a single action followed by a reinforcement. During learning,
the Q value becomes equal to the reinforcement. If the environment changes so

that no reinforcement follows the action, then the Q value extinguishes to zero. If
the environment changes back so that the reinforcement always follows the action,
then the Q value becomes equal to the reinforcement once again. For a constant
learning rate, both acquisition and reacquisition require the same amount of time.
For a decreasing learning rate, reacquisition would be slightly slower. For the ACP
network, reacquisition is faster, consistent with animal learning experimental results.

3 Definition of Optimality

Before it is possible to modify the network for optimality, or even to discuss the

optimality of a control system, it is necessary to define optimality. The performance
of a control system may be defined in terms of a reinforcement signal, R(t), which
is received from the environment on each time step based on the controller's actions.
A controller that acts so as to receive high values of R(t) is better than a controller

that acts so as to receive low values of R(t). An optimal controller can be defined
as a controller that chooses actions that maximize V, the expected value of the total
discounted reinforcement:

V =EB(m 'YR(t)) (9)

This is a standard definition in Markov decision process theory, reinforcement
learning theory, and control theory. The function E0 represents the expected value,
and -f is a constant between zero and one. It is assumed that at time t the controller
looks at the current state of the system being controlled and chooses an action. As a
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Figure 2
(a) Q-learning for an environment consisting of a single state, a single action, and all trials lasting only
one time step with a constant reinforcement received for performing the action in the state. If a
reinforcement of 1.0 is always received, then the Q-learning system learns to anticipate that
reinforcement. If the environment changes so that no reinforcement is ever received, then the
expectation extinguishes. If the environment changes again so that reinforcement of 1.0 is again
received, then the association is reacquired at the same rate as in the initial acquisition. (b) In the
original ACP network, modified ACP network, and single-layer ACP network, reacquisition is more
rapid than initial acquisition, consistent with animal learning experimental results. In the first graph, the
learninF rate ci = 1.0. In the second, the learning rate constants ci = {0.5,0.03,0.15,0.075,0.025}.
In both graphs, the discount factor 'y = 1.0, and the imual weights are 0.u0i.

result of that action, the state changes, and the controller receives a scalar reinforce-

ment signal, R(t). In a deterministic system, the new state and the reinforcement are

functions of the old state and the action chosen. In a stochastic system, the new state

and reinforcement are stochastically generated according to a probability distribution .

that is a function of the old state and the action.

This common definition of optimality has a number of features that make it

useful and intuitive. One such property is that a controller which is optimal by this

definition can be thought of as avoiding punishment or failure and seeking reward

or success. For example, actions that result in positive values of R are considered

better than actions that result in values of R that are zero or, worse yet, negative.

326 Adaptive Behavior Volume I, Number 3



An Optimal Learning Control System Leemon C. Baird III & A. Harry Klopf

Therefore, if an optimal controller receives a reinforcement of zero most of the
time, then positive values of R are analogous to rewards and negative values of R are
analogous to punishments. The controller performs actions that tend to increase the
probability of receiving positive R signals and decrease the probability of receiving
negative R signals. Similarly, if the system receives a reinforcement of R = 5 most
of the time, then the actions performed by an optimal controller can be interpreted
as treating R = 4 as a punishment and R = 6 as a reward. When the reinforcement
signals are interpreted in this manner, this definition of optimality yields intuitively
reasonable behavior.

If several different actions lead to the same reward, it is natural to define the optimal
action as that which leads to the earliest reward. Conversely, if several actions would
all lead to equal punishments, it is natural to define the optimal action as that which
delays punishment for as long as possible. When Iy is between 0 and I exclusive,
equation 9 defines optimality in this way. The exact value of "y determines the extent
to which immediate reinforcement is more important than delayed reinforcement.
This value must be chosen a priori; it cannot be learned or calculated. For example,
before a business can be advised on an optimal course of action, it is necessary to
determine the goals. To what extent is slow growth in the next year acceptable in
order to allow greater growth over the next 5 years? Is the primary goal short-term
profits or long-term growth? As another example, before a control engineer can
design a flight control system, it is necessary to know the preferences of the pilots.
Is it preferable to decrease errors quickly, yielding responsive but possibly oscillatory
controls, or is it preferable to decrease errors more slowly, yielding smoother but
sluggish controls? There is no "optimal" answer to these questions; the answers
depend on the preferences of those involved. Therefore, there is no "best" value for
-y; it should be chosen to reflect preferences. Lower values of -y give higher priority
to the immediate future, whereas higher values of -y give more nearly equal priorities.
If y = 1, then reinforcement signals at all points in time are equally important and
are given equal weight.

Equation 9 is also a reasonable definition of optimality in the presence of multiple,
competing goals. For example, Figure 3 illustrates the behavior of a system that starts
at point C and can move along a line with constant speed. The reinforcement R(t)
is zero at all times except for the first time the system reaches points A and B, at
which time it receives reinforcement RA and RB, respectively. If both reinforcement
signals are greater than zero, then points A and B are goals. They are conflicting or
competing goals, since movement toward one goal is movement away from the other
goal. If RA > RB and C is near the center between A and B, then the optimal policy
is to move first to point A, then to point B. This action achieves the most important
goal first. On the other hand, if C starts close enough to B, and if RA is only slightly
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A C B

A C B

4 ---

Figure 3
The problem of competing goals. The system starts at C and receives reinforcement RA when it first
reaches A and RB when it first reaches B. It is assumed that R.4 > RB > 0. When starting near the
center (top), the optimal path goes to A first, then B. When starting near B (bottom), the optimal path
goes to B first, then A. The exact values of RA, RB, and -y determine how close to B the system must
start to have the optimal path to reach B first. This appears to be a reasonable definition of optimal in the
presence of competing goals.

greater than RB, then the optimal policy is to move to B first, then A. It is optimal
to achieve the lesser goal first in this case because it reaches B much sooner, while
only slightly delaying arrival at A. The values of R.4 , RB, and y determine exactly
how close the starting point must be to B in order for the optimal path to proceed
through B first. This definition of optimality seems to be in agreement with what
most people would consider to be the optimal paths for this problem of competing
goals.

The goal of maximizing V in Equation 9 is a general definition of optimality,
capable of reflecting most intuitive aspects of optimality. It can encompass goals
involving reward, punishment, preferences for immediate versus delayed reinforce-
ment, and competing goals. Many different types of goals can be expressed in the
form of this definition simply by choosing an appropriate value of "Y and encoding
the value of R(t) appropriately. Thus, if a learning system is guaranteed to learn
to maximize V, then it is a general problem-solving system and is capable of solv-
ing a wide range of problems. Such systems are often referred to as reinforcement
learning systems, because they must learn on the basis of reinforcement signals alone,
without being told explicitly or exactly what actions to perform. An overview of
reinforcement learning algorithms is provided by Williams (1987).

328 Adaptive Behavior Volume 1, Number 3
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The preceding discussion defines what is meant by an optimal policy. The fol-
lowing analysis proves that the proposed learning system eventually will learn an
optimal policy for any environment if the environment is explored sufficiently. This
does not address the question of whether the optimal policy will be found in the
minimum amount of time or with the minimum punishment during learning. The
time required for learning will depend critically on the particular exploration strategy
employed. Another problem is that of deciding whe, to accept a suboptimal policy.
It may be preferable to converge to a suboptimal policy if the optimal policy is only
slightly better and if a large amount of punishment would be incurred during the
additional exploration required to find the optimal policy. When these considera-
tions are taken into account, the definition of optimal and the value of -Y must still
be chosen a priori. They cannot be learned. Wh.t does change with the additional
considerations is the definition of when the reinforcement must be maximized. The
simpler problem is to maximize reinforcement during a period following an explo-
ration and learning period. The more difficult problem is to maximize reinforcement
over all time, even during the early stages of learning. In both cases, the goal is to

maximize V as specified in equation 9, but in one case t = 0 is defined as the time
at which learn.ing begins, and in the other t = 0 is the time at which learning ends
and the learned policy is used.

The theory of learning automata deals with this problem of maximizing reinforce-

ment during learning. The majority of the work in learning automata has assumed
very simple environments, such as environments in which there is only a single state,
the reinforcement due to an action is received immediately, and the probability of
reward for each action is constant. It appears to be difficult to extend these theoretical
results to include learning systems for Markov sequential decision processes. For an
overview of learning automata theory, Narendra and Thathachar (1974, 1989) may
be consulted. Gittins (1989), who developed some of the most important theoret-
ical results in the field, describes them and provides an in-depth survey of learning

automata theory.

4 0-Learning

A learning controller must store information and modify the stored information

during the course of learning. If the goal is to maximize total reinforcement, then
there are a number of different types of information that might be stored. For
example, it might be useful to store a policy, a specification of which action to
perform in each state. It might also be useful to store an evaluation, an estimate of
the maximum total reinforcement that can be achieved when starting in each state.
A model could also be stored which, for a given action performed in a given state,
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would predict the state on the next time step. Watkins (1989) proposed a system
called Q-learning which stores Q values instead of policies, evaluations, or models.
In this system, a number called a Q value is stored for each action in each state.
The Q value for a given state-action pair represents an estimate of the maximum
total reinforcement that can be achieved by a sequence of actions that starts with the
given action in the given state. Watkins (1989) proved that a system that stores only Q
values can learn to be an optimal controller according to the definition of optimality
given in equation 9. This is guaranteed if the Q values are updated according to:

Q[x(t), u(t)] + _- R(t + 1) + y max {Q[x(t + 1), u]} (10)
U

The arrow with an a above it represents the operation of changing the Q value
so that it moves closer to the value of the expression on the right side of the arrow.
Equation 10 is equivalent to:

Qfx(t), u(t)J -- (1 - a) {Q[x(t), u(t)J}
+ a• (R(t + 1) + -y/max f{Qjx(t + 1),u]}) (11)

The parameter a is a number between 0 and 1 that controls the rate of change of
the Q value. If a is 1, the Q value changes instantly to be equal to the right side of
equation 10. If ia is close to 0, the Q value is changed little by a single update.

If the system is in state x(t) at time t, and the controller performs action u(t)
in response to that state, then the new state is x(t + 1). The value R(t + 1) is the
reinforcement received as a result of performing action u(t) in state x(t). Consistent
with the notation used throughout this article, R(t + 1) is a function of u(t) and
x(t), not u(t + 1) or x(t + 1). The maximum of all the Q values in the new state
represents an estimate of the maximum achievable discounted sum of reinforcement,
starting with R(t + 2). Thus, the sum on the right side of equation 10 represents an
estimate of what Q[x(t), u(t)] should be. The arrow in equation 10 represents the
act of updating the stored value for Q[x(t), u(t)] so that it moves closer to the value
of the right side. If the reinforcement is stochastic, then it is useful to change the
Q value slowly and update it multiple times. This allows the Q value to converge
to the expected value of the future reinforcement. Watkins (1989) proved that if a
for each Q value approaches zero at an appropriate rate, and if all the Q values are
updated infinitely often, then the Q values are guaranteed to converge to the correct
values. In practice, most Q-learning systems are implemented with a held constant
for all Q values.

Some of the ideas behind these algorithms were first utilized in Samuel's checkers-
playing program (1959, 1967). Some aspects of Watkin's (1989) Q-learning algo-
rithm were independently proposed by Werbos (1989) in a system called action de-
pendent heuristic dynamic programming (ADHDP), or back-propagated adaptive critic
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(BAC). A simulation of the ADHDP system is described in Lukes, Thompson, and
Werbos (1990). The issue of finding the maximum of the stored Q values for a state
is addressed in Baird (1992). Williams and Baird (1990) discuss the convergence prop-
erties of other dynamic programming systems for learning control. Barto, Sutton,
and Watkins (1990) relate dynamic programming to temporal difference methods,
prediction, and classical conditioning. Reinforcement learning, temporal difference

methods, and prediction are reviewed in more detail in Sutton (1988), Barto (1989),
Sutton and Barto (1981), and Dayan (1992). Other issues arising in Q-learning are
discussed in Barto and Bradtke (1991) and Sutton, Barto, and Williams (1991). Thrun
(1992) considers the issue of exploration of the environment with Q-learning sys-
tems. Chrisman (1992) and Whitehead and Ballard (1991) consider perceptual aliasing,
the problem arising when different states yield the same sensor inputs. Sutton (1990)
considers the incorporation of a model of the environment into the learning sys-
tem. Mahadevan and Connell (1991), Lin (1991), and Singh (1992) consider more
complex, hierarchical, or modular structures of Q-learning controllers. The control
actions generated by the controllers described later are discrete and are a determinis-
tic function of the state, but Gullapalli (1990, 1991a, 1991b) and Millington (1991)
have considered systems where the actions can be analog and stochastic. In addition,

reinforcement learning systems have been found to work well on difficult problems.
Tesauro (1990, 1992) has applied these ideas successfully to the problem of play-
ing the game of backgammon, and Sofge and White (1990) applied reinforcement
learning to automated machinery for creating thermoplastic composites. Not only

is a Q-learning controller guaranteed to learn eventually, but it also appears to do so
more quickly than other reinforcement learning systems for some problems. Barto

and Singh (1990), and Lin (1992) demonstrate that a Q-learning controller learns
faster than model-based learning systems for the particular problems investigated.
Results such as these indicate that systems employing Q-learning may have signifi-

cant potential for optimal learning control. We show that, given certain values for
the parameters, a modified form of the ACP network reduces to Q-learning and is,
therefore, optimal.

5 Optimality of the Modified ACP Network

Consider a discrete-state, discrete-time Markov sequential decision process that is to

be controlled. At each point in time, the process is in one of m states and the controller
has a choice of n possible actions. If action i is performed while the process is in state
j, then with probability 'Pik, on the next time step the process will be in state k and the
controller will receive a reward 'Rjk. R,, and Rmin are defined to be the maximum
and minimum of all the reward values, respectively. Costs associated with transitions
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are represented by rewards less than zero. A policy is a specification of which action
the controller should perform in each state. Given all the values of P and R, the goal
is to find the optimal policy, as defined by equation 9. The values P and R define
a system to be controlled, and the policy defines a controller for that system. The
problem is made more difficult if only y, R.,., and Rm, are given a priori. Then,
P and R must be discovered by the controller through the generation of actions and
the observation of results. This is the problem considered by Watkins (1989).

We now describe a modified form of ACP network that has the following prop-
erties. Given only 7, Rm,, and R,,n, the network is guaranteed to learn the optimal
policy in every state. An ACP network has a set of binary inputs, {si,... , sn }, a set
of binary outputs {ei,... , e.)}, and a real-valued input, R, representing the reward
signal. There is also an additional input, N, but this input is not needed and will be
assumed to be zero at all times. The ACP network can therefore be interfaced in a
natural manner with the Markov system described earlier. If the system is in state
i at time t, then si(t) = 1 and sj(t) = 0 for i # j. At any point in time, the ACP
network has at most one nonzero output. If ei(t) > 0, then action i is performed at
time t. If all outputs are zero, then the action associated with output el is performed.
If performing action i in state j at time t causes a transition to state k at time t + I
and yields a reward Rjk, then R(t + 1) may be defined as:

R(t + 1) =(iR - Rmin) (1 -- ) (12)

Rmax - Rmn

Thus, the "reward" generated by the Markov process, Rjk, goes through a linear

transformation to become the "reinforcement" experienced by the learning con-

troller, R(t + 1). This linear transformation of the network's reinforcement input
normalizes it so that R(t + 1) always stays within the range

[0 + Y

and the expected total discounted reward for any policy will be in the range [0, 1].
This simplifies the selection of parameters for the network, because all signals within
the network can remain in the range [0, 1] at all times. A policy will be optimal for
this transformed problem if and only if it is optimal for the original problem, so this
normalization has no effect on the behavior of the system.

The analysis provided next requires that the Markov system change state on every

time step. If it is possible that the system being controlled does not have this property,
then the interface between the network and the Markov process must be modified
slightly. The number of inputs to the network, n, will have to be twice the number
of states, with two inputs uniquely associated with each state. If the Markov system
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is in a given state for multiple time steps, then on the first time step in that state
one of the two associated inputs will be 1 and the other 0. On the next time step,
the values will be reversed, and they will alternate on each time step while in that
state. For each state, the same input will start with 1 every time a transition is made
into that state from another state. The learning system therefore sees a single Markov
process with n states, wherein the probability of transitioning from any state to itself
is zero for all actions.

Given this interface, the ACP network will have 4nm parameters, called weights,
which can change during learning. For a given state i and an action j, there are
four weights associated with that state and action: Wy+, Wij_, Wo0+, and Wo-.
Each weight marked "+" is a positive real number, and each weight marked "-"
is a negative real number. The sum (Wo0i+ + Woy-) represents an estimate of the
expected total discounted reward received if actionj is performed in state i followed
by optimal actions in all subsequent states. The other weights are constantly adjusted
so that the sum (W#+ + Wij_) will tend over time to become equal to (W0o+ + Wo•-).

The ACP network is guaranteed to solve Markov sequential decision problems if
six modifications are made to it:

1. The definition of y(t) in equation 2 should not include the R(t) term,
yielding:

y(t) =f [t (WY,+ + W - (t)xit)] (13)

2. Ay(t) in equation 6 should be replaced with an expression including
R(t) and the discount factor 'y, yielding a modified drive-reinforcement
learning mechanism:

AWoy±(t)= [-yy(t) - y(t - 1) + R(t)]

X kIW" _k( k) I [Ax,(t - k)] + (14)
k1~

3. The weights should change at every time step instead of only at the end
of each trial. This change makes the exact timing of the calculations
critical. If a A W(t) is calculated that would change the indexjm,1 (t),
then the weight should change and the calculations should be repeated
during that time step. Therefore the order of the calculations should be:

* Calculate each yi(t) for all i.
* Calculate jn. =j such that yj(t) is maximum (the lowest suchj in

case of tie).
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"* Calculate y(t).

"* Calculate each A W#j (t) and A Wo# (t).

"* Replace each Wy_(t) with Wj_(t) + AWj(t).

"* Recalculate yi(t),j,,., and y(t).

"* Recalculate each A W(t).

"* Calculate each W(t + 1).

4. The network should be able to operate in an exploratory mode and in a
controller mode. In controller mode, the indexj'a, should be the index of
the highest yj(t), In exploratory mode, the indexjrrx should be chosen
by some other mechanism. The only constraint on the choice ofjrj. is
that, if the system stays in exploratory mode, the system must eventually
try every action in every state infinitely often.

5. If the Markov process is nondeterministic, then the learning rate cl must
slowly decay to zero to ensure weight convergence. If cl is monoton-
ically nonincreasing, and if time t. is the first point in time such that
every action has been tried in every state at least n times prior to t., then
cl (t) should decrease at a rate that satisfies:

lim c1(t.) = 0 (15)
n-.00

00

Z cl(t") = 0o (16)

6. 1WI should be removed from equations 5 and 6, yielding:

AWYJ•,±+(t) = [Ca + CbIY(t)l] [Axi(t)]+ [y(t) - yj(r)] (17)

A WOij,, (t) = Ay(t) E ck [Axi(,-k)] + (18)

Modifications I and 2 are important changes that affect the behavior of the net-
work in significant ways. They are essential to optimality and also yield improvements

in the behavior of the network, as described later. Modifications 3, 4, and 5 are the

obvious properties necessary in almost any learning system to solve infinite horizon

Markov decision problems with unknown transition probabilities. Modification 6 is

assumed true in the following analysis. Instead of removing the I Wj factors from the

equation, they can simply be made to have an arbitrarily small effect. This is done
by initializing the weights to large values and using correspondingly small learning

constants. The weights then change by arbitrarily small percentages during learning
and so have arbitrarily small effects on the rate of learning. Although conditions 4

and 5 are needed for guaranteed optimaliy, they may not be necessary in practice.
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Only modifications 1, 2, and 3 were used in the experimental results presented

later. Modification 4, exploration, was not found to be necessary for the cart-pole

problem we employed. Exploration mechanisms remain an area for future research.
Modification 5, decaying learning rates, is of theoretical importance but is generally
not implemented in reinforcement learning systems. Modification 6 simplifies the
network and aids in the analysis of the network but has one negative effect. During
classical (delay) conditioning of animals or of the theoretical learning system de-
scribed in Klopf (1988), the output of the system increases slowly at first, then more
rapidly, then slowly again. This S-shaped learning curve occurs when an association
is learned for the first time. If the response extinguishes and is then reacquired, learn-

ing the reacquired response takes less time than learning the original response. This
property is due to the presence of the IWf factor in the equations and because all
weights come in excitatory-inhibitory pairs. If the I W1 factor is removed from the
equation (or, equivalently, the initial values of the weights are large), then learning
is never S-shaped. For the modified network described here, the I W1 factor remains
in the equation for compatibility with previous conditioning results. Small initial
weights are used for the conditioning simulations, and large initial weights are used

for the cart-pole control problem.
It has been verified in simulation that an ACP network with all of these modifi-

cations replicates the results in Klopf, Morgan, and Weaver (1993; see also the article,
"A Hierarchical Network of Control Systems that Learn"). These modifications,

therefore, do not adversely affect any of the network's demonstrated abilities.

Because of the interface with the Markov process previously described, any given
xi will never be nonzero for more than one consecutive time step. Therefore, if on
any given time step xi equals 1, then Axi(t) and [AxQ(t)]+ will both equal 1. If xi is
0 on a given time step, then Axi(t) will be 0 or -1 and [Axj(t)]+ will be 0. Thus
[Ax,(t)]+ is always equal to x,(t), which is always 0 or 1. Using this fact and choosing
values for the arbitrary constants so that 7r = 1, Ca = 1/2, Cb Co = 0 = 0, the

equations describing the network reduce to the following:

yt) = W# [W +(t) + Wy-_(t)] xiW ) (19)
YM

yAt) = [Woio-+(t) + woij.-Wt] x*~) (20)

= maximumj such that V k yj(t) _> yk(t) (21)

f_ - ½(Y(t) - Yj()) ifx*(t) 5 0 (22)( 0 otherwise
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("y(t) +PR(t)-y(t-I)) ifxi(t-1) #0
A Wo'_(+ 0 otherwise (23)

When the system is initialized, each motor center will give the same output as
the reinforcement center, PC. If excitatory weights are initialized greater than 1.0
and inhibitory weights are initialized less than -1.0, then the weights will never
change enough to reach zero, and equation 22 will always hold. Equation 22 ensures
that on every time step, the excitatory and inhibitory weights to the active motor
center will each change so as to eliminate half of the error in the motor center's
output. Therefore, the sum of those weights will change so that the output will
track perfectly the output of the reinforcement center. This ensures that the actions
selected are always the actions that maximize the output of the reinforcement center.
Equation 23 ensures that, when a given action is performed in a given state, the
weights associated with that state-action pair are updated to take into account the
reinforcement received for that action as well as the reinforcement center output on
the next time step.

Given these properties, the system reduces to Q-learning. While performing a
given action in a given state, the output of the reinforcement center can be inter-
preted as the Q value for that state-action pair, which is the expected discounted re-
ward for performing that action followed by optimal actions thereafter. Equations 19
through 23 then ensure that the weights are changed in accordance with equation 10,
as described in Watkins (1989) and Watkins and Dayan (1992). Given sufficient ex-
ploration, Watkins has proved that a Q-learning system will always converge to the
optimal solution. Therefore, for these parameter values and modifications, the mod-
ified ACP network will also converge to the optimal solution. Thus, the preceding
analysis, together with Watkins's results, constitute a proof of optimality for the
modified ACP network.

It is interesting to note that if the Markov process is deterministic (each 'Pjk is
either zero or one), then the modified ACP network will find the optimal policy for
every state that it visits sufficiently often. There is no need to explore explicitly by
performing an action with a low Q value; it can simply perform the action with the
highest Q value at all times, and this will automatically result in sufficient exploration,
as can be shown by induction. If all Q values are initialized to optimistic values (rep-
resenting an incorrectly high estimation of expected reward), then during learning
no value will ever drop below its correct value. If, in a given state, a suboptimal action
happens to have the highest Q value, then repeatedly choosing that action will result
in it approaching its correct value asymptotically. It is therefore guaranteed to fall
eventually below the value of some other action, at which time that other action will
be performed. This implicit exploration is guaranteed to continue until all Q values
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Figure 4
Single-laye" architecture. There is an excitatory and inhibitory weight from each state sensor to -ach
node. There is one node for each possible action. On each time step, the action is performed that is
associated with the node with the largest output. Positive, rewarding inputs (P) and negative, punishing
inputs (N) are combined to form a single, global reinforcement signal that drives learning. The only
weights that change during learning are the ones associated with recently performed actions. This model
is provably optimal and is capable of reproducing all of the demonstrated results of the unmodified,
two-layer ACP network.

for suboptimal actions have fallen below the correct Q value for the optimal action.

The optimal action will be performed from then on. In this manner, the system

eventually will learn the optimal policy in every state that is visited sufficiently often,

even though the system always performed the action with the highest Q value.

6 Single-Layer Model

The preceding analysis of the modified two-layer ACP network suggests that it might

be possible to simplify the network without losing any of the desirable properties.

The network in Figure 4 consists of only a single layer of linear components, yet it

reproduces all the results of the modified two-layer network. The single-layer model
is not the same as either layer in the two-layer model; rather, it is equivalent to the
entire modified two-layer ACP network. Each of the mechanisms in the single-layer

network is also present in the two-layer network, such as mutual inhibition and global
training signals within a layer. The two models have different internal structure and
learning mechanisms but identical behavior. The modified two-layer ACP network
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represents the minimum change necessary to the original ACP network to ensure
optimality. The single-layer network is much simpler and has identical behavior.
It represents the minimum change necessary to a Q-learning system to reproduce
the animal learning results. Some of the mechanisms in the two-layer network are
absent from the single-layer model, such as the presence of two different learning
mechanisms, facilitating connections, and some of the nonlinearities. On a given
time step, each node in the network computes a weighted sum of the inputs. Each
node is associated with an action. On a given time step, the action performed by
the system is the action associated with the node with the largest output. Learning
only occurs for those weights associated with recently performed actions. Learning
is driven by a single reinforcement signal, which is the sum of the reward signals
minus the sum of the punishment signals.

Equations 24 through 27 define the operation of the single-layer, simplified
model:

yt= t [WiY+(t) + WH/_(t)] xi(t) (24)

jnix(t) = maximumj such that Vk yj(t) > yk(t)

= index of the action performed at time t (25)

AWiy+(t) = ["/yj_,(t) -yj_.,(t- 1) +R(t)]

× Ck [Wiy+(t- k)j [Axij(t- k)]+ (26)

k=1

[Ax9(t - k)] +

0 x1(t-k)-xi(t-k-1) ifxj(t-k)-x,(t-k-1)>0

andj = j,,•(t - k) (27)

0 otherwise

The only nonlinearity associated with the outputs is the process of finding the max-
imum output. The only nonlinearity associated with the weights is the restriction
that the magnitude of a weight cannot fall below 0.1. This clipping of the weights
never occurs if the weights are initialized to sufficiently large values.

On time step t, the outputs yj(t) are calculated as linear combinations of the
inputs xi(t). The node with the largest index is found, and the index of that node
is labeled jim(t). The action associated with that output is performed, leading to
a new state with inputs xi(t + 1). Only weights associated with winning outputs
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change, reflecting learning. If a given output is never the largest, then the action
associated with that output will never be performed, and the weights associated with
that output will not change. Exploration could be implemented by causing an output
to win the competition even though it is not the largest output.

There are two weights from each sensor to each node: W/+ and Wy-. The
weight W/+ is always positive and W>._ is always negative. If W/+ falls below 0.1
during learning, then it is set equal to 0.1. If Wy- rises above -0.1, then it is set
equal to -0.1.

Ifthe network is interfaced to a Markov sequential decision process, as described in
the preceding section, then each node corresponds to a possible action. Each sensor
(or pair of sensors) corresponds to a different state, and the sensors are binary, with
exactly one input equal to 1 at any given time. The sum (W4+ + W4-_) converges
to the expected discounted total return for performing action i in state j followed by
optimal actions thereafter. The difference (W-+ - Wy) affects the speed of learning
for a given state-action pair, causing it to learn slowly at first and more quickly after
it has gained some experience. This yields the initial, positively accelerating portion
of the S-shaped learning curve observed in classical conditioning experiments.

The single-layer system reproduces all of the classical and instrumental condition-
ing results achieved to date by the two-layer ACP network. By the same procedure
used in the discussion of two-layer networks, the one-layer system can be reduced
to Q-learning and is, therefore, also optimal. For the simulations of classical and in-
strumental conditioning experiments, the sensor inputs to the network were binary
vectors that sometimes had multiple nonzero elements. For the optimality analysis
and for the cart-pole control experiments, the sensor input was a binary vector with
exactly one nonzero element at any given time.

The equations of both the original two-layer model and the single-layer model
imply that each layer acts as a winner-take-all network. There -re, therefore, two
types of inputs to a given center: feedfonvard inputs coming from sensors and from
other layers, and lateral inputs coming from other centers in the same layer. The
weights associated with feedforward inputs are plastic and change during learning.
The connections associated with lateral inputs are hard-wired, with excitatory con-
nections from each center to itself and inhibitory connections from each center to

every other center in the same layer. On each time step, the centers first calculate
their outputs based on their feedforward inputs, then compete in a winner-take-all
fashion based on their lateral inputs. The largest output in the layer wins the compe-
tition while all other outputs decay to zero. The winning output assumes the value
of the weighted sum of its feedforward inputs, whereas the losing outputs remain at
zero. These operations are repeated on each time step.

The reinforcement centers in the two-layer model learn in a manner similar to
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the centers in the single-layer model. In the two-layer model, learning is driven by
the difference between the feedfonward inputs at the end of one time step and the
feedforward inputs at the end of the previous time step. In the single-layer model,
learning is driven by the difference between the lateral inputs at the end of one time
step and the feedforward inputs at the end of the previous time step. Thus, both
models use the same structure within a layer, the same set of connections, the same
type of competition, and the same type of learning. The only differences are changes
as to which inputs drive learning for each center. The single-layer model does not
require any additional connections or additional flow of information beyond that
found in the two-layer model.

7 Conditioning Results

The ACP network described in Klopf, Morgan, and Weaver (1993) is capable of re-
producing a number of classical and instrumental conditioning experimental results.
The modified network described in the previous section retains this ability and is also
provably optimal. In addition, the modified network solves a problem arising with
the original network during simultaneous classical conditioning.

Sutton and Barto (1990) discuss the behavior of various models during simulta-
neous classical conditioning. They point out that the original drive-reinforcement
model (Klopf, 1988) predicts the development of strong inhibition when a condi-
tioned stimulus (CS) occurs simultaneous with, or immediately following, an un-
conditioned stimulus (US). This inhibition develops just as quickly as other forms
of conditioning and becomes strong enough to inhibit the unconditioned response
(UR) completely. For example, when food (a US) is placed in a dog's mouth, the
food will cause salivation (the UR). An initially neutral stimulus such as the sound
of a bell (a CS) has no effect on salivation. The original model predicts that if a bell
is rung simultaneous with, or just after, the placement of food in the mouth, then
after several repetitions, the dog will not salivte even when food is placed in the
mouth. If neutral stimuli were able to prevent URs in this manner, it is likely that
most animals would quickly lose their UPs.

The modified two-layer ACP network and the single-layer network do not exhibit
this conditioned inhibition. If a brief US is present simultaneously with, or slightly
before, the onset of the CS, then no conditioning occurs. If the US is on for a long
time, then conditioned excitation can occur, which then allows the CS to elicit the
UR, even in the absence of the US. All of the results in Klopf (1988) and Klopf,
Morgan, and Weaver (1993; see also the article, "A Hierarchical Network of Control
Systems that Learn") have been reproduced using the single-layer network described
earlier, except that simultaneous and backward CS-US conditioning yielded no con-
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ditioning or conditioned excitation instead of conditioned inhibition. In the case

of simultaneous conditioning, this represents an improvement in the ability of the

model to predict experimentally observed animal learning phenomena. In the case

of backward conditioning, as Klopf (1988) noted, animal learning experiments have

yielded both conditioned inhibition and conditioned excitation. The evaluation of

theoretical models for the case of backward conditioning remains a complex issue,
given the ambiguous experimental evidence.

8 A Hierarchical Network Architecture

The single-layer network described earlier is guaranteed to learn the correct actions

eventually. This learning process could be very slow, however, so it may be useful

to look at extensions of the architecture to speed learning. This section describes

a hierarchy composed of several of these layers. The hierarchy is first described

for a standard control problem, and then the application of it to other problems is

discussed.

A standard control problem is the cart-pole inverted-pendulum problem consid-

ered in Michie and Chambers (1968) and in Barto, Sutton, and Anderson (1983).

A cart moves on a finite-length track. A pole is connected to the top of the cart

with a hinge. The goal is to balance the pole on the cart while the cart avoids the

ends of the track. The goal must be accomplished by applying a 10-newton force ,__

either the left or right side of the cart on each time step. The state of the system is

described by four variables:

x: the position of the cart (center of the track is zero,

to the right is positive)

x: the velocity of the cart

0: the angle of the pole from vertical (to the right is positive)

9: the angular velocity of the pole

If the pole exceeds 12 degrees from vertical, or if the cart exceeds 2.4 m from the

center of the track, that is defined to be a failure. The learning system is given no

"indication of how it is performing until failure occurs. Then, it is informed that a

failure occurred but not whether the failure was due to the pole angle or to the cart

position. After a failure, the cart and pole are returned to the initial state, and the

controller is allowed to continue. An error in the controller's output may not result

in failure for many time steps. Therefore, this problem is substantially more difficult

than standard model-reference control problems in which performance information

is available on every time step, as in Morgan, Patterson, and Klopf (1990).
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In Barto, Sutton, and Anderson (1983), each of the elements of the state of the

controlled system was divided into intervals having the following boundaries:

x ±0.8, ±2.4 m

ic: ±0.5, ±00 m/s

0: 0, ±1,4±6,4±120

±: -50, ±oo- /s

With these partitions, the state space is divided into 3 x 3 x 6 x 3 = 162 distinct

bins. The learning system has inputs encoding in which bin the cart-pole is but not

where the cart-pole is within the bin. This lack of information makes the control

problem more difficult, preventing the cart-pole system from being strictly a Markov
process. The learning system proposed by Barto, Sutton, and Anderson (1983) was

a network composed of an associative search element (ASE) and an adaptive critic element

(ACE). The ASE-ACE was given 162 binary inputs. At each point in time, the input
corresponding to the current state of the cart-pole was set to 1 and all other inputs

were set to 0. The learning system was given no a priori information about which

bins were adjacent.

Whereas the ASE-ACE used, in essence, a single number from 1 to 162 to repre-
sent the state, the hierarchical system proposed here encodes the input in four separate
numbers, representing information about each of the four state variables. Each of

the state variables is associated with three bins, representing large positive values, large
negative values, and values near zero. The cart-position state variable uses only two

bins. The partitions between bins are at the same values as listed previously, except

there is no partition for 0 = ±60, or for x = -0.8 m. The hierarchical network

is given more a priori information in that it is given information about each state
variable individually instead of having all of them encoded as a single number. It is

not clear how such information could be utilized by a single-layer network. The hi-
erarchy can therefore be thought of as a means to encode a priori information about

the number of state variables and the desired value of each state variable individually.

The hierarchy, with separate sensors for each variable, is shown in Figure 5.

Each variable has three intervals and two binary inputs associated with it. One

input is I when the variable is in its lowest-valued interval, and the other variable is
I when it is in its highest-valued interval. Both inputs go to zero when the variable

is in the center interval. Cart position, x, has a left and right interval but not a center
interval, so it always has one active input. Each of the four layers in the hierarchy

is a single-layer controller, or ACP network, as described earlier. Each layer has two
inputs, corresponding to its particular state variable, and two outputs, corresponding

to the action of pushing left or pushing right on the cart.

342 Adaptive Behavior Volume I. Number 3

1



. An Optimal Learning Control System Leemon C. Baird HI & A. Harry Klopf

x

Left
R

Right

Figure 5
Hierarchical network architecture. Each of the four horizontal layers shown is equivalent to the network
in Figure 3. Each layer receives its inputs from sensors representing a different state variable of the
cart-pole system. Only one layer is active at any given time, and the output of that layer determines the
direction of the force applied to the cart. The lower layers respond to more rapidly changing state
variables and are, therefore, given higher priority. At any point in time, the active layer is the lowest layer

whose state variable is not near zero. When all state variables are near zero, the top layer is active.

The hierarchy is designed so that exactly one layer is active at any given time.

When a layer is active, its behavior is described by the equations given for the single-

layer system. When a layer is not active, it freezes completely. Therefore t - I in the

network equations does not represent the previous time step but rather the last time

step in which a given layer was active. If either of the 6 inputs is equal to 1, then

the bottom layer becomes active and forces the other three layers to be inactive. If

neither 6 input is 1, then the bottom layer becomes inactive and control can pass to

the 0 layer. If either of the 0 inputs is 1, then the 0 layer becomes active and forces

S• the tvwo liyers above it to be inactive, and so forth. The output of the active layer on

a given time step determines whether the controller applies force to the left or right

on that time step. At failure, all of the layers with nonzero inputs become active so

they can learn from the failure.
The inputs to the hierarchy are ordered as shown in Figure 5 and are ranked

by their rate of change. If each variable is divided by the difference between its

maximum and minimum values, then it is possible to compare the speed at which
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the normalized variables change. In the cart-pole system, 6 changes more quickly
than any of the other variables. The parameter 6 varies from its lowest value to its
highest value in a fraction of a second, whereas x requires many seconds to go from

one end of its range to the other. Each variable serves as an input to one layer of

the hierarchy. The fastest-changing variable is connected so that the network reacts
immediately when it reaches extreme values. The network reacts to a slower variable
only when all of the faster variables are safely in the center of their ranges. Although

the assignment of state variables to layers was done a priori in this experiment, it
would be possible for a network to self-organize so that lower levels connected to

faster-changing inputs and higher levels connected to slower-changing inputs.

This hierarchical ACP network is provided with more a priori information than
were the learning systems described in Michie and Chambers (1968) and Barto, Sut-

ton, and Anderson (1983). The hierarchical ACP network has a priori information

encoding which bins are adjacent and which bins are near zero. This makes the
problem somewhat easier. On the other hand, as in the case of Michie and Cham-

bers (1968) and Barto, Sutton, and Anderson (1983), the reinforcement signal comes

only at failure. The network is not informed whether failure was due to the pole

angle or the cart position. Thus, this test bed still contains the difficult temporal and

structural credit assignment problems inherent in the original problem formulation.

Success with this problem would tend to indicate the usefulness of this hierarchical

architecture.

The hierarchical ACP network can be viewed as a type of subsumption architec-
ture as proposed by Brooks (1986, 1991a, 1991b). In a behavior-based robot using
the subsumption architecture, the controller is divided into layers, each of which

runs in parallel and has direct access to sensors and actuators. Each layer is responsi-
ble for a given behavior, such as obstacle avoidance or wall following, and the actions
generated by some layers are capable of modifying or overriding actions generated

by other layers. Mahadevan and Connell (1991) developed a three-level subsump-

tion architecture robot with modules for finding, pushing, and unwedging boxes in

a room. This system used Q-learning to learn to find and push the boxes across a

room. Lin (1991) developed a three-level system that used Q-learning to allow a
robot to follow walls, go through doors, and dock with a recharger. Singh (1992)

has developed a method for combininig multiple simple behaviors, each of which

employs Q-learning. In each of these cases, it has been shown that the hierarchical
system can learn much faster than a single Q-learning system. The problem of bal-
ancing a pole would generally be considered a single behavior and would typically

be handled by a single level of a subsumption architecture. The hierarchical ACP
network uses four layers for this problem, one for each of the four state variables.
Thus, by viewing as a behavior the problem of keeping a particular state variable near
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zero, the hierarchical ACP network can be considered a fine-grained, behavior-based
subsumption system. Unlike some course-grained systems, this hierarchy could in
principle be self-organizing. This is possible because each layer has the same goal:

to keep its input near zero. The assignment of inputs to layers could be performed
automatically by assigning faster-changing inputs to lower levels and slower-changing
inputs to higher levels.

* 9 Test Results

Computer simulations were performed of the ASE-ACE controller of Barto, Sut-
ton, and Anderson (1983), the modified two-layer ACP network, and the hierarchical
network. Because the weight changes within the single-layer ACP network are iden-
tical to the weight changes in the modified two-layer ACP network, separate results
for the single-layer network are not given. The parameters and equations for the
simulation are given in the appendix. In the ACP networks, initial weights were
biased slightly so that, in each state, the network would initially cause force to be
exerted either to the left or to the right. The action to be given the larger weight was
chosen randomly, so the behavior of the system on the first trial was dependent on
the seed used by the random number generator. In the ASE-ACE system, all weights
are initially equal, but the actions are chosen nondeterministically, so that system too
is affected by the random number generator seed.

The cart-pole system was simulated at 50 Hz, so each time step represented 0.02
second of simulated time. As in Barto, Sutton, and Anderson (1983), a time step for
the controller was defined as the period that the system was in a single bin, so the
controller was constrained to apply a constant force while in a bin. Each trial started
with the cart stationary in the center of the track and the pole stationary and vertical
(all state variables set to zero). The trial ended in failure when the cart position
exceeded ±2.4 m or the pole angle exceeded ±12 degrees The reinforcement signal
to the controller was a constant value throughout the trial and then dropped to a lower
value at failure. The goal of maximizing reinforcement was therefore equivalent to
the goal of postponing failure for as long as possible. A controller was considered
to have learned successfully if a trial reached 80,000 time steps (26.7 minutes of
simulated time) without failure. If a controller failed to learn successfully within
100 trials, it was considered unsuccessful. Each controller was tested ten times, with
different random number seeds. Table 1 summarizes the percentage of the ten runs
in which each controller successfully learned, as well as the average time to learn.

In ten runs, the two-layer ACP network was successful only three times. It often
became stuck performing a suboptimal policy. This problem might be overcome by
adding an exploration mechanism but, instead, was addressed here by implementing

Adaptive Behavior Volume I, Number 3 345

S



An Optimal Learning Control System Leemon C. Baird III & A. Harri Klopf

Table 1 Comparison of learning reliability and speed

Training Time
% Success Average Number Average Number Average Simulated

of Trials of Time Steps Time
(minutes)

Two-layer
ACP 30 77 75,000 25.0

ASE-ACE 80 70 96,511 32.2

Hierarchical
ACP 100 71 4016 1.3
ACP = associative control process; ASE-ACE = associative search element-adaptive critic element.

a hierarchical architecture. In those cases in which the network did learn, it learned
in a reasonable amount of time compared to the ASE-ACE.

The ASE-ACE was more reliable, successfully learning to balance the pole 80

percent of the time. (The results in Barto, Sutton, & Anderson (19831 seem to
indicate that the system learned successfully 8 times out of 10, in approximately
70 trials on average.) The time to learn was not reported by Barto, Sutton, and
Anderson, so we simulated the ASE-ACE to obtain those values. In 10 runs of our
simulation, the controller learned 7 times out of 10 and required 50 trials on average.
A successful run required an average of 96,000 time steps to learn, which is 32
minutes of simulated time.

The hierarchical ACP network was the most reliable network for this particular
problem. It always learned to balance the pole within the 100-trial limit. It required
roughly the same number of trials as the other two controllers but required less
than one-twentieth of the simulated time for training. One must be cautious in
generalizing based on results from a single simulated plant, but it does seem that

the hierarchical network is a promising approach, improving learning speed by more
than an order of magnitude and improving the reliability of learning for the cart-pole
problem. This architecture might be useful in other regulator problems, problems that
involve keeping state variables near a given value. This appears to be a fruitful area
for future research.

One additional simulation was performed with the two-layer, 162-bin ACP net-
work, this time involving a supervised learning task. In the previous simulations, the

entire period that the system was in a given bin was treated as a single time step. For
the supervised learning task, each time step of the simulation was treated as a separate
time step by the network. Thus the network would experience multiple time steps
and would have multiple chances to change its weights and its output, even while it
was within a single bin. The output of the network was observed by a trainer, which
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was preprogrammed with a known solution to the cart-pole problem. Whenever the
output of the network matched the desired output, the network was given a high
reinforcement signal. Whenever the output of the network was different from the
desired output, the network was given a low reinforcement signal. Not surprisingly,
when the initial, randomly determined action for a bin matched the desired output,
the network never tried any other action. When the initial action for a bin was
incorrect, it performed the incorrect action for one time step, then performed the
correct action from then on. In this supervised case, when the duration of a time
step was 0.002 second, the network succeeded in learning to balance the pole in
less than a single trial; that is, it learned without failure. This result demonstrates
that the reinforcement learning system described here is capable of utilizing detailed,
supervised training signals when they are available.

10 Conclusions

The original ACP network described in Klopf, Morgan, and Weaver (1993; see also
the article, "A Hierarchical Network of Control Systems that Learn" in this issue) re-
produces a variety of animal learning experimental results. The ACP network mod-
ifications proposed here, including a modified drive-reinforcement learning mech-
anism, simplify the system, improve the behavior for certain types of conditioning,
and cause the system to be provably optimal, while retaining the ability to reproduce
the experimental results. Although the single-layer network is guaranteed eventually
to learn to control any Markov decision process, the simulation results suggest that
the learning speed can be improved through the use of a hierarchical architecture.
The hierarchical architecture that we have proposed and tested improves the learning
speed for the cart-pole problem by more than an order of magnitude while causing
the system to converge to the correct answer more reliably This hierarchical approach
may be general enough to apply to other high-dimensional regulator problems.
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Appendix

The cart-pole equations were identical to the ones used in Barto, Sutton, and An-
derson (1983) and Baird and Baker (1990). The cart-pole test bed was simulated at
50 Hz according to these equations:

F, + ml(62 sin 0, - d, cos 9t) - /psgn(q,)
xt = +(28)mc + m

gsinO, + cosO , (- -ml n 0,+p sgn(i;)) A"(9,.,+M )1 (29)

The plant was simulated using Euler's method with a time step of 0.02 seconds.
The parameters used were as follows:

g = 9.8 m/s 2 (acceleration due to gravity)

m, = 1.0kg (mass of cart)

m = 0.1 kg (mass of pole)

I = 0.5 m (half of pole)

,u, = 0.0005 (coefficient of friction of cart on track)
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Lp = 0.000002 (coefficient of friction of pole on cart)

F, = ±10.0 newtons (force applied to cart's center of mass at time t)

The parameters for the modified two-layer ACP network were:

* "f= 0. 9 5, Ca = 0. 2 4 9 , cb = 0.0, r = 5,

c= 0.033, c2 = 0.030, c3 = 0.027, c4 = 0.024, cs = 0.021
reinforcement signal = 0.006 during trial, 0.0 at failure

minimum weight magnitude = 0.1
initial value of inhibitory weight = -2.0

initial value of excitatory weight to positive reinforcement center
= 2.114
initial value of excitatory weight to motor centers = 2.122 (for biased
action), 2.121 (for unbiased action)

The parameters for the hierarchical network were:

"-y = 0.95, T = 5, c = 0.033, c2 = 0.030, c3 = 0.027, c4 = 0.024,
Cs = 0.021

reinforcement signal = 0.002 during trial, 0.0 at failure

minimum weight magnitude = 0.1

initial value of inhibitory weight = -0.7

initial value of excitatory weight to motor centers = 0.73 (for biased
action), 0.72999 (for unbiased action)

For the supervised learning simulation, the trainer calculated the desired force, F, as

follows:

if >50'/s then F=+10N

else if < -50'/s then F =-10 N

else if 0> 1' then F=+1ON

else if0< -l' then F= -ION

else if:> 0.5 m/s then F= +10 N

else if i < -0.5 m/s then F = -10 N

else ifx>0.8m then F=+10N

else F = -10 N

The classical and instrumental conditioning results were reproduced with the single-

layer model. As in Klopf, Morgan, and Weaver (1993), the weight values and neuron

outputs were clipped to lie within the appropriate range for this simulation. If, during
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I
learning, the magnitude of a weight went outside the range [0.1,4], it was clipped to

lie on the border of that range. For the classical conditioning simulations, the output
was forced to remain positive. When the weighted sum of the inputs was negative,
the output was set to zero.
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